0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 IDP
↳10 UsableRulesProof (⇔)
↳11 IDP
↳12 IDPNonInfProof (⇒)
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 AND
↳19 IDP
↳20 UsableRulesProof (⇔)
↳21 IDP
↳22 IDPNonInfProof (⇒)
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 IDP
↳27 UsableRulesProof (⇔)
↳28 IDP
↳29 IDPNonInfProof (⇒)
↳30 IDP
↳31 IDependencyGraphProof (⇔)
↳32 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB18 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 && y > 0) {
if (x > y) {
while (x > 0) {
x--;
}
} else {
while (y > 0) {
y--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 32 rules for P and 5 rules for R.
Combined rules. Obtained 6 rules for P and 1 rules for R.
Filtered ground terms:
816_0_main_LE(x1, x2, x3, x4) → 816_0_main_LE(x2, x3, x4)
Cond_816_0_main_LE(x1, x2, x3, x4, x5) → Cond_816_0_main_LE(x1, x3, x4, x5)
529_0_main_LE(x1, x2, x3, x4) → 529_0_main_LE(x2, x3, x4)
Cond_529_0_main_LE1(x1, x2, x3, x4, x5) → Cond_529_0_main_LE1(x1, x3, x4, x5)
814_0_main_LE(x1, x2, x3, x4) → 814_0_main_LE(x2, x3, x4)
Cond_814_0_main_LE(x1, x2, x3, x4, x5) → Cond_814_0_main_LE(x1, x3, x4, x5)
Cond_529_0_main_LE(x1, x2, x3, x4, x5) → Cond_529_0_main_LE(x1, x3, x4, x5)
593_0_main_Return(x1) → 593_0_main_Return
Filtered duplicate args:
816_0_main_LE(x1, x2, x3) → 816_0_main_LE(x2, x3)
Cond_816_0_main_LE(x1, x2, x3, x4) → Cond_816_0_main_LE(x1, x3, x4)
529_0_main_LE(x1, x2, x3) → 529_0_main_LE(x2, x3)
Cond_529_0_main_LE1(x1, x2, x3, x4) → Cond_529_0_main_LE1(x1, x3, x4)
814_0_main_LE(x1, x2, x3) → 814_0_main_LE(x1, x3)
Cond_814_0_main_LE(x1, x2, x3, x4) → Cond_814_0_main_LE(x1, x2, x4)
Cond_529_0_main_LE(x1, x2, x3, x4) → Cond_529_0_main_LE(x1, x3, x4)
Combined rules. Obtained 6 rules for P and 1 rules for R.
Finished conversion. Obtained 6 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] →* 0))
(1) -> (3), if ((x0[1] →* x0[3])∧(x1[1] →* x1[3]))
(2) -> (0), if ((0 →* x1[0])∧(x0[2] →* x0[0]))
(2) -> (5), if ((0 →* x1[5])∧(x0[2] →* x0[5]))
(3) -> (4), if ((x1[3] > 0 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(4) -> (2), if ((x0[4] →* x0[2])∧(x1[4] + -1 →* 0))
(4) -> (3), if ((x0[4] →* x0[3])∧(x1[4] + -1 →* x1[3]))
(5) -> (6), if ((x1[5] > 0 && x1[5] < x0[5] && x0[5] > 0 →* TRUE)∧(x1[5] →* x1[6])∧(x0[5] →* x0[6]))
(6) -> (7), if ((x1[6] →* x1[7])∧(x0[6] →* 0))
(6) -> (8), if ((x1[6] →* x1[8])∧(x0[6] →* x0[8]))
(7) -> (0), if ((x1[7] →* x1[0])∧(0 →* x0[0]))
(7) -> (5), if ((x1[7] →* x1[5])∧(0 →* x0[5]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
(9) -> (7), if ((x1[9] →* x1[7])∧(x0[9] + -1 →* 0))
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(1) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 529_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧529_0_MAIN_LE(x1[0], x0[0])≥COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 529_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧529_0_MAIN_LE(x1[0], x0[0])≥COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x0[0] + [(2)bni_36]x1[0] ≥ 0∧[(-1)bso_37] + x1[0] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x0[0] + [(2)bni_36]x1[0] ≥ 0∧[(-1)bso_37] + x1[0] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x0[0] + [(2)bni_36]x1[0] ≥ 0∧[(-1)bso_37] + x1[0] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36] + [bni_36]x0[0] + [(2)bni_36]x1[0] ≥ 0∧[(-1)bso_37] + x1[0] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36 + (2)bni_36] + [(3)bni_36]x0[0] + [(2)bni_36]x1[0] ≥ 0∧[1 + (-1)bso_37] + x0[0] + x1[0] ≥ 0)
(8) (x0[1]=x0[2]∧x1[1]=0 ⇒ COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥814_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥))
(9) (COND_529_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_529_0_MAIN_LE(TRUE, 0, x0[1])≥814_0_MAIN_LE(x0[1], 0)∧(UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥))
(10) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(11) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(12) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(13) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧0 = 0∧[(-1)bso_39] ≥ 0)
(14) (x0[1]=x0[3]∧x1[1]=x1[3] ⇒ COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥814_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥))
(15) (COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_529_0_MAIN_LE(TRUE, x1[1], x0[1])≥814_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥))
(16) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(17) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(18) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧[(-1)bso_39] ≥ 0)
(19) ((UIncreasing(814_0_MAIN_LE(x0[1], x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_39] ≥ 0)
(20) (0=x1[0]∧x0[2]=x0[0] ⇒ 814_0_MAIN_LE(x0[2], 0)≥NonInfC∧814_0_MAIN_LE(x0[2], 0)≥529_0_MAIN_LE(0, x0[2])∧(UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥))
(21) (814_0_MAIN_LE(x0[2], 0)≥NonInfC∧814_0_MAIN_LE(x0[2], 0)≥529_0_MAIN_LE(0, x0[2])∧(UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥))
(22) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(23) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(24) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(25) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧0 = 0∧[(-1)bso_41] ≥ 0)
(26) (0=x1[5]∧x0[2]=x0[5] ⇒ 814_0_MAIN_LE(x0[2], 0)≥NonInfC∧814_0_MAIN_LE(x0[2], 0)≥529_0_MAIN_LE(0, x0[2])∧(UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥))
(27) (814_0_MAIN_LE(x0[2], 0)≥NonInfC∧814_0_MAIN_LE(x0[2], 0)≥529_0_MAIN_LE(0, x0[2])∧(UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥))
(28) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(29) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(30) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧[(-1)bso_41] ≥ 0)
(31) ((UIncreasing(529_0_MAIN_LE(0, x0[2])), ≥)∧0 = 0∧[(-1)bso_41] ≥ 0)
(32) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 814_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧814_0_MAIN_LE(x0[3], x1[3])≥COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(33) (>(x1[3], 0)=TRUE ⇒ 814_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧814_0_MAIN_LE(x0[3], x1[3])≥COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(34) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]x1[3] + [bni_42]x0[3] ≥ 0∧[(-1)bso_43] ≥ 0)
(35) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]x1[3] + [bni_42]x0[3] ≥ 0∧[(-1)bso_43] ≥ 0)
(36) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]x1[3] + [bni_42]x0[3] ≥ 0∧[(-1)bso_43] ≥ 0)
(37) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]x1[3] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
(38) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_42] = 0∧[(-1)Bound*bni_42] + [bni_42]x1[3] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
(39) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[2]∧+(x1[4], -1)=0 ⇒ COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥814_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(40) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥814_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(41) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(42) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(43) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(44) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(45) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_44] = 0∧[(-1)Bound*bni_44] + [bni_44]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(46) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥814_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(47) (>(x1[3], 0)=TRUE ⇒ COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥814_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(48) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(49) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(50) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] + [bni_44]x0[3] ≥ 0∧[1 + (-1)bso_45] ≥ 0)
(51) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(52) (x1[3] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_44] = 0∧[(-1)Bound*bni_44] + [bni_44]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
(53) (&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0))=TRUE∧x1[5]=x1[6]∧x0[5]=x0[6] ⇒ 529_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧529_0_MAIN_LE(x1[5], x0[5])≥COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(54) (>(x0[5], 0)=TRUE∧>(x1[5], 0)=TRUE∧<(x1[5], x0[5])=TRUE ⇒ 529_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧529_0_MAIN_LE(x1[5], x0[5])≥COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(55) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x0[5] + [(2)bni_46]x1[5] ≥ 0∧[-2 + (-1)bso_47] + x0[5] ≥ 0)
(56) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x0[5] + [(2)bni_46]x1[5] ≥ 0∧[-2 + (-1)bso_47] + x0[5] ≥ 0)
(57) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [bni_46]x0[5] + [(2)bni_46]x1[5] ≥ 0∧[-2 + (-1)bso_47] + x0[5] ≥ 0)
(58) (x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_46] + [bni_46]x0[5] + [(2)bni_46]x1[5] ≥ 0∧[-1 + (-1)bso_47] + x0[5] ≥ 0)
(59) (x1[5] + x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_46] + [(3)bni_46]x1[5] + [bni_46]x0[5] ≥ 0∧[-1 + (-1)bso_47] + x1[5] + x0[5] ≥ 0)
(60) ([1] + x1[5] + x0[5] ≥ 0∧x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(3)bni_46 + (-1)Bound*bni_46] + [(3)bni_46]x1[5] + [bni_46]x0[5] ≥ 0∧[(-1)bso_47] + x1[5] + x0[5] ≥ 0)
(61) (x1[6]=x1[7]∧x0[6]=0 ⇒ COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥816_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥))
(62) (COND_529_0_MAIN_LE1(TRUE, x1[6], 0)≥NonInfC∧COND_529_0_MAIN_LE1(TRUE, x1[6], 0)≥816_0_MAIN_LE(x1[6], 0)∧(UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥))
(63) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(64) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(65) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(66) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧0 = 0∧[2 + (-1)bso_49] ≥ 0)
(67) (x1[6]=x1[8]∧x0[6]=x0[8] ⇒ COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥816_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥))
(68) (COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6])≥816_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥))
(69) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(70) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(71) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧[2 + (-1)bso_49] ≥ 0)
(72) ((UIncreasing(816_0_MAIN_LE(x1[6], x0[6])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_49] ≥ 0)
(73) (x1[7]=x1[0]∧0=x0[0] ⇒ 816_0_MAIN_LE(x1[7], 0)≥NonInfC∧816_0_MAIN_LE(x1[7], 0)≥529_0_MAIN_LE(x1[7], 0)∧(UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥))
(74) (816_0_MAIN_LE(x1[7], 0)≥NonInfC∧816_0_MAIN_LE(x1[7], 0)≥529_0_MAIN_LE(x1[7], 0)∧(UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥))
(75) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(76) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(77) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(78) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧0 = 0∧[(-1)bso_51] ≥ 0)
(79) (x1[7]=x1[5]∧0=x0[5] ⇒ 816_0_MAIN_LE(x1[7], 0)≥NonInfC∧816_0_MAIN_LE(x1[7], 0)≥529_0_MAIN_LE(x1[7], 0)∧(UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥))
(80) (816_0_MAIN_LE(x1[7], 0)≥NonInfC∧816_0_MAIN_LE(x1[7], 0)≥529_0_MAIN_LE(x1[7], 0)∧(UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥))
(81) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(82) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(83) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧[(-1)bso_51] ≥ 0)
(84) ((UIncreasing(529_0_MAIN_LE(x1[7], 0)), ≥)∧0 = 0∧[(-1)bso_51] ≥ 0)
(85) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9] ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(86) (>(x0[8], 0)=TRUE ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(87) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_52 + (-1)Bound*bni_52] + [(2)bni_52]x1[8] ≥ 0∧[(-1)bso_53] ≥ 0)
(88) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_52 + (-1)Bound*bni_52] + [(2)bni_52]x1[8] ≥ 0∧[(-1)bso_53] ≥ 0)
(89) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_52 + (-1)Bound*bni_52] + [(2)bni_52]x1[8] ≥ 0∧[(-1)bso_53] ≥ 0)
(90) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(2)bni_52] = 0∧[(-1)bni_52 + (-1)Bound*bni_52] ≥ 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(91) (x0[8] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(2)bni_52] = 0∧[(-1)bni_52 + (-1)Bound*bni_52] ≥ 0∧0 = 0∧[(-1)bso_53] ≥ 0)
(92) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9]∧x1[9]=x1[7]∧+(x0[9], -1)=0 ⇒ COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥816_0_MAIN_LE(x1[9], +(x0[9], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(93) (>(x0[8], 0)=TRUE∧+(x0[8], -1)=0 ⇒ COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥816_0_MAIN_LE(x1[8], +(x0[8], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(94) (x0[8] + [-1] ≥ 0∧x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(95) (x0[8] + [-1] ≥ 0∧x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(96) (x0[8] + [-1] ≥ 0∧x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(97) (x0[8] + [-1] ≥ 0∧x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(2)bni_54] = 0∧[(-1)bni_54 + (-1)Bound*bni_54] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(98) (x0[8] ≥ 0∧x0[8] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(2)bni_54] = 0∧[(-1)bni_54 + (-1)Bound*bni_54] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(99) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9]∧x1[9]=x1[8]1∧+(x0[9], -1)=x0[8]1 ⇒ COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥816_0_MAIN_LE(x1[9], +(x0[9], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(100) (>(x0[8], 0)=TRUE ⇒ COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥816_0_MAIN_LE(x1[8], +(x0[8], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(101) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(102) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(103) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_54 + (-1)Bound*bni_54] + [(2)bni_54]x1[8] ≥ 0∧[(-1)bso_55] ≥ 0)
(104) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(2)bni_54] = 0∧[(-1)bni_54 + (-1)Bound*bni_54] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(105) (x0[8] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(2)bni_54] = 0∧[(-1)bni_54 + (-1)Bound*bni_54] ≥ 0∧0 = 0∧[(-1)bso_55] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(529_0_main_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(593_0_main_Return) = [-1]
POL(529_0_MAIN_LE(x1, x2)) = [-1] + x2 + [2]x1
POL(COND_529_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(814_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_814_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_529_0_MAIN_LE1(x1, x2, x3)) = [1] + [2]x2
POL(<(x1, x2)) = [-1]
POL(816_0_MAIN_LE(x1, x2)) = [-1] + [2]x1
POL(COND_816_0_MAIN_LE(x1, x2, x3)) = [-1] + [2]x2
529_0_MAIN_LE(x1[0], x0[0]) → COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
COND_814_0_MAIN_LE(TRUE, x0[4], x1[4]) → 814_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_529_0_MAIN_LE1(TRUE, x1[6], x0[6]) → 816_0_MAIN_LE(x1[6], x0[6])
529_0_MAIN_LE(x1[0], x0[0]) → COND_529_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
529_0_MAIN_LE(x1[5], x0[5]) → COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
COND_529_0_MAIN_LE(TRUE, x1[1], x0[1]) → 814_0_MAIN_LE(x0[1], x1[1])
814_0_MAIN_LE(x0[2], 0) → 529_0_MAIN_LE(0, x0[2])
814_0_MAIN_LE(x0[3], x1[3]) → COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
529_0_MAIN_LE(x1[5], x0[5]) → COND_529_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
816_0_MAIN_LE(x1[7], 0) → 529_0_MAIN_LE(x1[7], 0)
816_0_MAIN_LE(x1[8], x0[8]) → COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])
COND_816_0_MAIN_LE(TRUE, x1[9], x0[9]) → 816_0_MAIN_LE(x1[9], +(x0[9], -1))
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] →* 0))
(1) -> (3), if ((x0[1] →* x0[3])∧(x1[1] →* x1[3]))
(2) -> (5), if ((0 →* x1[5])∧(x0[2] →* x0[5]))
(7) -> (5), if ((x1[7] →* x1[5])∧(0 →* x0[5]))
(9) -> (7), if ((x1[9] →* x1[7])∧(x0[9] + -1 →* 0))
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
(1) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9]∧x1[9]=x1[8]1∧+(x0[9], -1)=x0[8]1 ⇒ COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥816_0_MAIN_LE(x1[9], +(x0[9], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(2) (>(x0[8], 0)=TRUE ⇒ COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥816_0_MAIN_LE(x1[8], +(x0[8], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(3) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x0[8] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9] ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(9) (>(x0[8], 0)=TRUE ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(10) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x0[8] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_816_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(816_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_816_0_MAIN_LE(TRUE, x1[9], x0[9]) → 816_0_MAIN_LE(x1[9], +(x0[9], -1))
COND_816_0_MAIN_LE(TRUE, x1[9], x0[9]) → 816_0_MAIN_LE(x1[9], +(x0[9], -1))
816_0_MAIN_LE(x1[8], x0[8]) → COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])
816_0_MAIN_LE(x1[8], x0[8]) → COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((x0[1] →* x0[2])∧(x1[1] →* 0))
(4) -> (2), if ((x0[4] →* x0[2])∧(x1[4] + -1 →* 0))
(1) -> (3), if ((x0[1] →* x0[3])∧(x1[1] →* x1[3]))
(4) -> (3), if ((x0[4] →* x0[3])∧(x1[4] + -1 →* x1[3]))
(3) -> (4), if ((x1[3] > 0 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(6) -> (7), if ((x1[6] →* x1[7])∧(x0[6] →* 0))
(9) -> (7), if ((x1[9] →* x1[7])∧(x0[9] + -1 →* 0))
(6) -> (8), if ((x1[6] →* x1[8])∧(x0[6] →* x0[8]))
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (3), if ((x0[4] →* x0[3])∧(x1[4] + -1 →* x1[3]))
(3) -> (4), if ((x1[3] > 0 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (3), if ((x0[4] →* x0[3])∧(x1[4] + -1 →* x1[3]))
(3) -> (4), if ((x1[3] > 0 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(1) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[4], x1[4])≥814_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(2) (>(x1[3], 0)=TRUE ⇒ COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_814_0_MAIN_LE(TRUE, x0[3], x1[3])≥814_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(3) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x1[3] ≥ 0 ⇒ (UIncreasing(814_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 814_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧814_0_MAIN_LE(x0[3], x1[3])≥COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(9) (>(x1[3], 0)=TRUE ⇒ 814_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧814_0_MAIN_LE(x0[3], x1[3])≥COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(10) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_814_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(814_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_814_0_MAIN_LE(TRUE, x0[4], x1[4]) → 814_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_814_0_MAIN_LE(TRUE, x0[4], x1[4]) → 814_0_MAIN_LE(x0[4], +(x1[4], -1))
814_0_MAIN_LE(x0[3], x1[3]) → COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
814_0_MAIN_LE(x0[3], x1[3]) → COND_814_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(9) -> (8), if ((x1[9] →* x1[8])∧(x0[9] + -1 →* x0[8]))
(8) -> (9), if ((x0[8] > 0 →* TRUE)∧(x1[8] →* x1[9])∧(x0[8] →* x0[9]))
(1) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9]∧x1[9]=x1[8]1∧+(x0[9], -1)=x0[8]1 ⇒ COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[9], x0[9])≥816_0_MAIN_LE(x1[9], +(x0[9], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(2) (>(x0[8], 0)=TRUE ⇒ COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥NonInfC∧COND_816_0_MAIN_LE(TRUE, x1[8], x0[8])≥816_0_MAIN_LE(x1[8], +(x0[8], -1))∧(UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥))
(3) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x0[8] ≥ 0 ⇒ (UIncreasing(816_0_MAIN_LE(x1[9], +(x0[9], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x0[8] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x0[8], 0)=TRUE∧x1[8]=x1[9]∧x0[8]=x0[9] ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(9) (>(x0[8], 0)=TRUE ⇒ 816_0_MAIN_LE(x1[8], x0[8])≥NonInfC∧816_0_MAIN_LE(x1[8], x0[8])≥COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])∧(UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥))
(10) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x0[8] ≥ 0 ⇒ (UIncreasing(COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x0[8] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_816_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(816_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_816_0_MAIN_LE(TRUE, x1[9], x0[9]) → 816_0_MAIN_LE(x1[9], +(x0[9], -1))
COND_816_0_MAIN_LE(TRUE, x1[9], x0[9]) → 816_0_MAIN_LE(x1[9], +(x0[9], -1))
816_0_MAIN_LE(x1[8], x0[8]) → COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])
816_0_MAIN_LE(x1[8], x0[8]) → COND_816_0_MAIN_LE(>(x0[8], 0), x1[8], x0[8])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer